

Industrial Augmented Reality: Mobile or

Web?
Jacob Gibson

11/10/2020

1

Table of Contents

Table of Contents 1

Abstract 2

Introduction 2

Background 4

Industry 4.0 4

Industrial Augmented Reality 5

Goals 5

Android App 5

Comparison and Metrics 6

Accomplishments and Results 7

Android App 7

Comparison of the Apps 9

Usability/Accessibility Metrics 9

Ease of Development 10

Performance Metrics 11

Conclusions and Further Work 11

References 13

2

Abstract

As the world moves to Industry 4.0, Augmented Reality (AR) applications will move to

the forefront of the way people work, shop, and play. In accordance with that, applications like

Siemens Teamcenter Visualization that are currently used to review product designs and model

factory floors will need to be updated to provide that AR functionality. First, I create an Android

AR app that can stream data from a Teamcenter Visualization instance running on a desktop to

an Android phone. Next, I investigate the other plausible route for an AR upgrade to

Teamcenter Visualization - a web app utilizing Siemens PLM VisWeb. Finally, I compare the two

based on usability, accessibility, ease of development, and performance metrics. Ultimately, I

provide guidance as to whether the mobile or web platform is currently the most suited to AR

development.

Introduction
 Siemens is a global company focused on industry, energy, and healthcare. It is the

largest manufacturer in Europe, but it also produces a large array of software in its Digital

Industries Software division. The CAD software they create is used by engineers, architects,

and other professionals all around the world. One such software is Siemens Teamcenter

Visualization (TcVis). Used by 24 of the top 25 automotive manufacturers and 9 of the top 10

aerospace manufacturers, TcVis is an application that provides digital markup and visualization

features for the product lifecycle. Users can access 2D and 3D design data, collaborate with

other users, and even view that data in Virtual Reality (VR). These powerful tools allow users to

create and analyze digital prototypes that surpass physical prototypes in cost, time, and quality.

Users can also visualize digital twins of existing objects, which can be combined with VR and

collaboration features to do things like maintenance training in a safe learning environment.

3

 Moving forward, Siemens would like to add AR capabilities to Teamcenter Visualization

to enable even more use cases for the application. As technologies improve and manufacturers

adopt things like AI, machine learning, and IoT, quality becomes an even more complex goal to

attain. Businesses aiming for quality will need to have greater speed, transparency, and

accuracy that is hard to attain with the technologies they are using today (Radziwill, 6). AR can

solve many of these problems by providing an accurate, fast, and easy to use way to visualize

products in any stage of the product lifecycle. Hence, adding AR capabilities to TcVis would add

an incredible amount of value to the app.

 Given that Teamcenter Visualization can have very high graphical requirements, it was

decided that the best AR solution would be a web or standalone app that can connect to an

instance of Teamcenter Visualization that acts as a server. A distributed system like this is

common in AR apps due to the relative weakness of mobile devices compared to desktop

applications (Lima, 2).

 A working prototype for the web app already exists in the form of Siemens PLM

VisWeb’s AR features. This app could be used as the basis for web app metrics, but a

standalone app needed to be created. The app needed to be able to connect to an instance of

Teamcenter Visualization over a TCP connection, display the streamed data in AR, and react to

changes in the Teamcenter Visualization instance in real time. I detail the goals and results of

this step of research in its corresponding sections under Goals and Accomplishments and

Results.

 In the next phase of the research, the two apps needed to be analyzed on the bases of

usability, accessibility, ease of development, and performance. Usability and Accessibility were

chosen so that the app can be used by as many people and in as many ways as possible.

Given that the app will be primarily controlled through the Teamcenter Visualization instance

running on a desktop, this metric considers things like available platforms and possible input

methods. Ease of Development is the most minor of the metrics chosen, but valuable

4

information nonetheless. This metric considers things like the language the app is written in,

how easily it interfaces with existing libraries, and available development environments. Finally,

the Performance metric aims to guide Siemens to the app that will provide the most perceived

value to their customers. The two apps will be measured on things like frames per second,

latency from the desktop to the phone, etc.

Background

Industry 4.0

 The rise of Internet of Things (IoT) in the world is leading to what many experts are

calling Industry 4.0. As the world embraces IoT, the entire product lifecycle will be augmented.

Producers will have access to powerful new design and manufacturing options enabled by more

efficient factories and big data. Consumers, on the other hand, will have access to total

customization in the products they consume. In an IoT factory, every stage of production will

have access to knowledge of every other stage. Every designer, assembler, and warehouse

worker will be able to see where each product came from and where each is headed at any

time. This tight integration will allow factories to shift from the mass production of generalized

goods to the mass production of specialized goods (Becker, 2). For example, a consumer

looking for a new pair of shoes could log on to the company’s website, design a shoe with the

exact colors and look that they desire, and purchase that shoe for no extra cost over a

“standard” model. Better yet, a consumer in the market for a new car could select the exact

parts they wanted in their car before the car is even made.

 These changes may seem like a sci-fi future today, but these changes are coming

sooner than one would expect. In fact, many shoe manufacturers are already offering totally

customizable shoes and many factories are already accepting IoT devices for monitoring and

maintenance. It will be important, then, that software stays on pace with these changes and

5

provides the new solutions that producers and consumers will need in Industry 4.0. Central to

those new needs is VR and AR (Becker, 5). Producers need these immersive tools to better

monitor their factories and analyze the products that their users are creating, while consumers

will need these tools to visualize the product they’re buying in the environment around them. For

example, AR technology enables a consumer to try on a shoe right in their living room or see a

new car in their driveway. Siemens Teamcenter Visualization already has powerful VR

functionality but will certainly benefit from getting in on the ground floor of Industrial AR tools.

Industrial Augmented Reality

 Industrial Augmented Reality (IAR) is a subset of AR defined as Augmented Reality for

product design, manufacturing, training, maintenance, and logistics (Büttner, 1). Pokémon Go is

a common example of commercial or recreational AR, and while impressive in its own right, it

lacks many of the features that IAR provides. IAR places the focus on precision, accuracy, and

performance above all else. There has already been a wealth of research done into IAR

applications, but most of it tends to focus on AR projections and AR head-mounted-displays

(Büttner, 3). This research aims to show the viability of mobile IAR, but the web app and

Android app both allow for head-mounted-display IAR. Additionally, most prior IAR research has

been into modeling factories and increasing worker performance (Büttner, 4). There is a noted

void of IAR for product lifecycle management in both academia and industry, which is something

this research aims to fill.

Goals

Android App

The prototype Android App created in this research must meet the following criteria:

6

● Connect to a Teamcenter Visualization instance over TCP. The Teamcenter

Visualization instance will act as a server and send a bytestream of the currently

rendered model to the Android app. The Android app will render that streamed model in

the Augmented Reality scene.

● Include Augmented Reality functionality. The app will utilize the Android ARCore API

to render an AR scene. Direct Model libraries will then be integrated with the ARCore

rendering to allow for the easy addition of streamed data f rom Teamcenter Visualization.

● Allow for basic tracking of the streamed model through the placement of anchors.

These anchors will be placed on a flat surface in the AR scene by tapping the screen.

Once an anchor has been placed, the streamed model will stick to that point until a new

anchor is placed.

● Ensure that all Teamcenter Visualization functionality will be properly streamed to

the Android app. Teamcenter Visualization’s powerful functionalities should be sent to

the Android app “for free.” This means that an AR user could easily add measurements,

markups, cross sections, etc. to their model and see the altered model in real time on

the app. This goal is here to ensure all of the changes these functions create on the

model are captured in the UPCS stream and sent along to the app. Hence, changes

made here will actually be made to Teamcenter Visualization and not the Android app.

Comparison and Metrics

The following comparisons will be made, and metrics will be collected between the apps:

● Usability and Accessibility. The two apps will be compared on basic usability and ease

of set-up. Both will initially have very minimal user interfaces, so this comparison will

also include a survey of the different devices each app would be available on.

● Ease of Development. The two apps will be compared from a coding perspective. This

will include things like the programming language used and the development

7

environment required. Furthermore, the apps will be compared on how easy or hard it

would be to integrate existing Siemens rendering libraries.

● Performance. Finally, the apps will be compared on a few performance metrics.

Particularly, the framerate of the apps will be measured with a variety of models to see

which performs better with different kinds of data on a real phone. Additionally, the

latency between the phone and desktop will be measured for each solution with a variety

of models.

Accomplishments and Results

Android App

 The app created has met all but the last of its goals. The app started off as a Siemens’s

Direct Model renderer that connected to a simplified Teamcenter Visualization viewer called

RxDr. This simplified viewer has the same rendering capabilities and code as Teamcenter

Visualization, but without all the extra features on top like measurement, cross section, etc.

RxDr was used to provide a more lightweight development environment, as the developer did

not need to run a full Teamcenter Visualization instance. The app creates a TCP connection

with the RxDr server and then receives data over a UPCS stream. This same connection can

relatively easily be created with a Teamcenter Visualization instance by moving the RxDr code

into a new module in the Teamcenter Visualization code. Hence, the first goal has been met.

8

 Next, the Direct Model rendering used in the initial app would need to be integrated with

the OpenGL ES rendering of an Android ARCore app so that the app could leverage all of the

ARCore functionality. Luckily, Direct Model is also built on OpenGL ES rendering and so the

integration of the two went very smoothly. The app uses ARCore rendering as the base, and

then adds the Direct Model rendering on top, completing the second goal.

 After that, the app would need to have some basic tracking. Eventually, the app will

utilize industrial-strength tracking through the VisionLib library. Using VisionLib, the app will be

able to map the AR model onto a physical version of that same model in the real world, allowing

users to digitally edit the virtual version and see their changes overlaid on the physical version

in AR. As a proof of concept and as a form of tracking for users without a physical version of

their model, the app here will implement ARCore’s anchor-based tracking. ARCore will pick up

on flat surfaces around the user, after which the user can click any point on the surface to

anchor the model. The model will snap to that location and remain there until the user taps

again to move the anchor somewhere else. Even if the anchor moves off of the screen, ARCore

will remember where the anchor was and find it again when that point returns on screen. This

basic tracking satisfies the third goal of this research.

 The final goal, streaming all Teamcenter Visualization functionality to the app, has not

yet been reached. Originally, this goal seemed relatively straightforward. The code in RxDr that

9

handled the TCP connection and UPCS stream needed to be ported into TcVis in a new

module. The new module, VP Augmented Reality, was created but it turned out that porting the

code over was a more involved process than originally thought. In RxDr, the streaming code

could rather easily be added to the basic rendering the app provides. Unfortunately, TcVis’s

complexity means that there’s a lot more to be done than just porting the code. A new ribbon

would need to be made in the UI, the new module would need to get many more interfaces than

RxDr needed, and some of the code would need to be updated for the latest version of Direct

Model. In total, this process would probably take a full-time developer a little less than a month.

Comparison of the Apps

 Of course, this research is most relevant to Siemens so that the management can

determine the best course of action moving forward. Thus, it’s important to compare the Android

AR and VisWeb AR solutions. Below, the apps are compared on the criteria of

Usability/Accessibility, Ease of Development, and Performance.

Usability/Accessibility Metrics

 One of the most important differences between the two apps is the platforms that they

can be run on. The app created in this research runs on Android, so it can be used on any

Android device such as mobile phones, tablets, and even certain AR Head Mounted Displays.

VisWeb AR, on the other hand, uses WebXR. This means that it can be used by any device that

has access to a browser with WebXR support. Many tablets and mobile phones have access to

such browsers, and it’s possible that some Head Mounted Displays could as well. Plus, WebXR

is available on both iOS and Android, widening the potential userbase further.

 The apps also have some user interaction differences. Currently, both apps can detect

flat surfaces and place the model on top of the surface. The models can also be anchored at

any point on the surface. In the Android app, the user can then rotate and resize the model on

10

their desktop server and the changes will be sent to the app. In VisWeb, on the other hand, the

user can use two fingers in a pinching motion to resize the model the same way a user could

zoom on a webpage or photo. These interactions highlight a key difference between the two

apps – the Android app tends to rely on the server for user interaction while the VisWeb user

interacts with the app directly. While this seems like a clear win for VisWeb, it’s a bit of a double-

edged sword. In VisWeb, every bit of functionality needs to be added to the app directly, while

the Android app gets all the TcVis functionality for free through the desktop server. The user

could perform any bit of TcVis functionality on the server – for example a cross section – and

the user will see that cross section in AR automatically.

 Overall, the VisWeb solution currently wins out in terms of Usability and Accessibility.

WebXR makes it accessible on more platforms than just Android devices, and it currently has

more user interaction in the actual AR app instead of on the desktop server. Despite this, the

Android app still has potential, and a possible UI solution is explored in the Future Work section.

Ease of Development

 As mentioned in the Usability/Accessibility section, Android has a development

advantage in that it will get access to TcVis functionality automatically. Android also has a few

other benefits over VisWeb in terms of ease of development. Since the Android app runs on

C++, existing Siemens libraries can relatively easily be integrated into the app. Contrast this

with PLM VisWeb, where existing libraries need to be ported over into JavaScript calls that the

app can use.

 Another helpful advantage for Android is that both ARCore and Siemens’s Direct Model

render using OpenGL ES. This made the integration of the two very smooth, but unfortunately

VisWeb doesn’t have the same benefit. WebXR is also built on top of OpenGL ES, but VisWeb

itself doesn’t use Direct Model for its rendering at this time. Eventually, Direct Model may make

it into VisWeb, but until it does the Android app will have that advantage.

11

 While VisWeb won out in terms of Usability and Accessibility, the Android app is the

clear winner in terms of Ease of Development. Given the same investment, I believe the Android

app could be developed more quickly than the VisWeb.

Performance Metrics

 Unfortunately, this research was concluded before Performance Metrics could be

collected. The necessary changes to collect metrics like framerate and server latency haven’t

yet been added to either solution, but it’s also being worked toward for both solutions.

Additionally, the COVID pandemic created challenges for the developers to test both solutions

on the same device.

 While there aren’t any performance comparisons between the two apps yet, it will be

interesting to see if there are differences between the two. WebXR uses WebGL to render its

graphics, which is itself based on OpenGL ES. WebGL is the preferred method for mobile real-

time processing due to its similarities to OpenGL ES, so we can expect similar performance in

terms of raw rendering capabilities (Ioniță, 4). WebXR also uses ARCore behind the scenes

when used on an Android device, so both apps will use the same AR API when tested on a

single device. The difference will lie in the extra efficiency that WebXR or Direct Model can

provide, if any.

Conclusions and Further Work

 Overall, this research was very successful. The prototype created provides a great

potential starting point for Siemens AR that relies on desktop Teamcenter Visualization. It has

superior ease of development over the VisWeb solution, worse usability and accessibility, and

unknown but most likely similar performance. Of course, there is still plenty of room for the app

to grow and for this research to continue in the coming months.

12

 The first area of growth would be to carry out the performance comparison between the

apps. This work is already underway and both teams are working together to get access to a

tablet to test both solutions on. In total, it would take a full-time developer to complete the

performance comparison in around a week, making this next step attainable relatively soon.

 Next up would be to finish up the final goal of this research. Connecting the Android app

to Teamcenter Visualization would be a huge step forward for the prototype, but as said in the

Accomplishments and Results section, would take a full-time developer around a month to

complete. Hopefully, project management will see the progress made so far and the

performance comparison and put more resources on the project. As of now, this project is only

worked on in free time at the end of each Agile iteration, so being accepted by the project

management would be a great boon to the project’s speed.

 After doing the performance comparison and connecting the app to TcVis, we would like

to add scene authoring to the app. With scene authoring, users could add buttons and other

controls to TcVis on the desktop, and then see those controls in AR on the app. This

functionality would add a wide variety of UI options for the user and truly transition the app from

a prototype to a realized product. Below is a mockup of the scene authoring using simple

buttons that make the disc in the brake assembly spin or stop.

13

References

Becker, Christian, et. al. “A Survey on Human Machine Interaction in Industry 4.0.” Feb. 2020.

45 pages. https://arxiv.org/pdf/2002.01025.pdf

Büttner, Sebastian, et. al. “The Design Space of Augmented and Virtual Reality Applications for

Assistive Environments in Manufacturing: A Visual Approach.” June 2017. 8 pages.

https://thomaskosch.com/wp-content/papercite-data/pdf/buettner2017design.pdf

Ioniță, Cristian and Bărbulescu, Alexandru. “Real-time Video Processing in Web Applications.”

Sept. 2015. 4 pages. https://arxiv.org/ftp/arxiv/papers/1712/1712.02438.pdf

Lima, João Paulo, Teichrieb, Veronica, and Kelner, Judith. “A Standalone Markerless 3D

Tracker for Handheld Augmented Reality.” Feb. 2009. 15 pages.

https://arxiv.org/ftp/arxiv/papers/0902/0902.2187.pdf

Radziwill, Nicole. “Let’s Get Digital: The many ways the fourth industrial revolution is reshaping

the way we think about quality.” Oct. 2018. 10 pages.

https://arxiv.org/ftp/arxiv/papers/1810/1810.07829.pdf

ARCore (Version 1.20.0) [Software Development Kit]. Retrieved from

https://developers.google.com/ar/develop

WebXR (Version 20200724) [Application Programming Interface] Retrieved from

https://www.w3.org/TR/webxr/

https://arxiv.org/pdf/2002.01025.pdf
https://thomaskosch.com/wp-content/papercite-data/pdf/buettner2017design.pdf
https://arxiv.org/ftp/arxiv/papers/1712/1712.02438.pdf
https://arxiv.org/ftp/arxiv/papers/0902/0902.2187.pdf
https://arxiv.org/ftp/arxiv/papers/1810/1810.07829.pdf
https://developers.google.com/ar/develop
https://www.w3.org/TR/webxr/

